
Graph Theory

Graph: A graph G = (V,E) is a mathematical structure consisting of two sets, a non empty set
V known as the vertex set and a set E known as the edge set.

The elements of V and E are called vertices and edges respectively. Precisely V and E are
also denoted as V (G) and E(G) respectively.

Trivial Graph: A graph with single vertex and no edges is known as trivial graph.

Null Graph: A graph for which edge set is empty is called null graph.

Loop: An edge whose both the end points are same is known as a loop.

Isolated vertex: A vertex which is not the end vertex of any edge is known as an isolated vertex.

Parallel Edges or Multiple Edges: If two or more edges have the same end vertices are
known as parallel edges or multiple edges.

Simple Graph: A graph without loops or parallel edges is called simple graph.

Adjacent vertices: The vertices which are joined by an edge are known as adjacent vertices
and the adjacent vertices are called neighbors.

Here edge e6 is a loop, e2 and e3 are multiple edges, v5 is an isolated vertex.
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Incidence of a vertex and edge: If a vertex v is an end point of edge e then v is said to be
incident on e. e and v are called incident to each other.

Degree of a vertex: A degree of a vertex v in a graph G is defined as number of edges incident
on v plus twice the number of loops. The degree of a vertex v is denoted by d(v) or dG(v).

Pendent vertex: A vertex of degree 1 is called a pendent vertex.

Odd & Even vertex: A vertex of a graph is called odd or even depending on whether its
degree is odd or even.

For the graph G shown in the following figure, we have d(v1) = d(v2) = d(v4) = 2 d(v3) =
3 d(v5) = 1 and d(v6) = 0.

Theorem: For any graph G with e edges and n vertices v1, v2, . . . , vn the sum of degrees of
vertices of a graph is twice the number of edges.

Proof: Since each edge has two end points, each edge will precisely contribute 2 to the sum of
degrees. Moreover each loop will also contribute 2 to the sum of degrees.

Hence,
∑n

i=1 d(vi) = 2e.

Theorem: For any graph G there is an even number of odd vertices.

Proof: Let A and B be the set of even vertices and odd vertices respectively of graph G. Then
for each a ∈ A, d(a) is even. This implies that

∑
a∈A d(a) is even.

Now by first theorem of graph theory we have∑
a∈A

d(a) +
∑
b∈B

d(b) = 2e.

Thus
∑

b∈B d(b) = 2e−
∑

a∈A d(a) which is even being difference of two even numbers.

As all the terms in
∑

b∈B d(b) are odd, the number of elements in B must be even. Thus for
G there is an even number of odd vertices.

Regular graph: A graph is said to be regular if all of its vertices have equal degree.

If for every vertex v of a graph G, d(v) = k then that graph is known as k-regular.

Complete graph: A complete graph is a simple graph in which every pair of vertices is joined
by an edge.
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We also note that a complete graph with n vertices is (n− 1)-regular. A complete graph on
n vertices is denoted by Kn.

In the following figure, the complete graphs on two, three, four and five vertices are shown.

Bipartite graph: Let G be a graph with vertex set V . If V can be partitioned into two subsets
such that V = V1 ∪ V2 and each edge of G has one end vertex in V1 and other end vertex in V2

then V is called bipartition of G and G is called a bipartite graph.

Complete Bipartite graph: A complete bipartite graph is a simple bipartite graph with
bipartition V = V1 ∪ V2 such that every vertex in V1 is joined to every vertex of V2.

If V1 has m-vertices and V2 has n-vertices then such complete bipartite graph is denoted by
Km,n. The complete bipartite graph K1,n is known as a Star graph.

Here some complete bipartite graphs are shown.

A directed edge (or arc) is an edge whose one end vertex is designated as the ‘tail’ and other
end vertex is designated as the ‘head’.

An arc is said to be directed from ‘tail’ to ‘head’. A multiarc or multiple arc is a set of two
or more arcs having the same head and tail.

A graph whose every edge is directed is called a directed graph or digraph.

A graph which contains directed as well as undirected edges is called partially directed graph.
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The underlying graph of directed or partially directed graph G is the graph resulted by
removing all the designations ‘head’ and ‘tail’ from the graph G.

The indegree of a vertex v in a digraph is the number of arcs directed to v and the outdegree
of a vertex v is the number of arcs directed away from v.

Each loop at v counts one towards indegree and one towards outdegree.

Theorem: In a digraph, the sum of indegrees and outdegrees are both equal to the number of
edges.

Proof: Each directed edge contributes one to the indegree at ‘head’ and one to the outdegree at
‘tail’.

Subgraph: Let G be a graph with vertex set V (G) and edge set E(G). A graph H with vertex
set V (H) and edge set E(H) is said to be subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G)
and each edge of H has same end vertices as in G.

Every graph G is a subgraph of itself. The subgraph of G other than G is called a proper
subgraph.

If H2 is a subgraph of H1 and H1 is a subgraph of G then H2 is also a subgraph of G. A
single vertex of a graph G is a subgraph of G. A single edge of a graph G is a subgraph of G.

Induced subgraph: In a graph G the induced subgraph on a set of vertices H = h1, h2, . . . , hk
denoted as G(H) has H as its vertex set and it contains every edge of G whose end vertices are
in H i.e. V (G(H)) = H and E(G(H)) = {e ∈ E(G) / the end vertices of e are in H}

In other words if subgraph H satisfies the added property that uv ∈ E(G(H)) if and only if
uv ∈ E(G) then H is a induced subgraph of G.

Spanning subgraph: A subgraph H of a graph G is a spanning subgraph if V (H) = V (G).

For the graph G , H1 is a spanning subgraph but not an induced subgraph as there is an
edge between 3 and 4 in G but it is not in H1.

Where H2 is an induced subgraph but not a spanning subgraph.

Walk: A walk of a graph G is a finite alternating sequence of vertices and edges. If W is a walk
between the vertices v0 and vk then we denote it as v − vk. Here v0 and vk are called origin and
terminus while remaining vertices are called internal vertices.

The number of edges in the walk is called the length of the walk.

Closed walk: A v − vk walk of a graph G is called closed if v0 = vk.
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Trail: A walk in which no edge is repeated is called a trail.

Path: A walk in which no vertex is repeated is called a path.

Cycle: A closed walk with n vertices with n ≥ 3 is called a cycle if all the n-vertices are distinct.

Also note that every path is a trail but every trail is not a path.

For the following graph, W1 = v0e1v2e2v3e3v1 is a path of length three. W2 = v0e1v2e4v1e3v3
is a trail as well as path. While W3 = v0e1v2e4v1e3v3e2v2 is a trail but not a path as vertex v2 is
repeated.

A vertex u of graph G is said to be connected to vertex v of a graph G if there is a path
from u to v in graph G.

A graph is called connected if every pair of vertices are connected.

A graph which is not connected is called disconnected.

Notation: Given any vertex u of graph G, C(u) denotes the set of all vertices which are
connected to u.

The subgraph induced by C(u) is called connected component of a given graph and number
of connected components of a graph G is denoted by ω(G).

Any disconnected graph has at least two connected components. Any connected graph has
only one component.

Theorem: A graph G is disconnected if and only if its vertex set V can be partitioned into two
non-empty disjoint subsets V1 and V2 such that there does not exists any edge in G whose one
end vertex is in subset V1 and other in subset V2.
Proof:(⇒) Suppose that such partition exists. Consider u, v ∈ V such that u ∈ V1 and v ∈ V2.
No path exists between u and v; otherwise there would be at least one edge whose one end vertex
is in V1 and the other end vertex is in V2.

Hence if partition exists then G is disconnected.

(⇐) Conversely let G be a disconnected graph and let u ∈ V (G). Let V1 be the set of all the
vertices joined by a path to u.

V1 will not include all vertices of G as G is disconnected. The vertices which does not belongs
to V1 they form the set V2.
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Due to construction of V1 and V2 no vertex of V1 is joined to any vertex of V2.

Hence V1 and V2 together form a partition.

Distance in Graph: If u and v are two vertices of a graph G then the length of shortest path
between u and v in G is called the distance between u and v in G and it is denoted as d(u, v).

consider the following graphs:

If W1 is a u− v walk and W2 is a v − w walk. Like W1 = ue1 . . . ekv and W2 = vf1 . . . fiw
then joining W1 and W2, the new walk W = ue1 . . . ekvf1 . . . fiw is a u−w walk. This new walk
is called concatenation of two walks.
Theorem: A non-empty graph G with at least two vertices is bipartite if and only if it has no
odd cycle.
Proof: Suppose that G is bipartite graph with vertex set V having bipartition V = V 1 ∪ V 2.
Let C = v0, v1, v2, . . . , vk, v0 be a cycle of G. Also assume that v0 ∈ V1. Then as G is bipartite
v1 ∈ V 2 and consequently v2 ∈ V1, v3 ∈ V2, v4 ∈ V1 and so on.

In general the odd index vertices v2n+1 must belongs to V2 while the even indexed vertices
v2n must be in V1. Now since v0 is in V1 we must have vk on other end of cycle must be in V2.
Hence k must be an odd number and consequently the cycle C is even. As C was arbitrary cycle
we can say that G has no odd cycles.

Conversely, let G be a graph with at least two vertices which has no odd cycles. Without
loss of generality also assume that G is connected.

For any u ∈ V define a partition V1 and V2 of V as follows:

V1 = {x/d(u, x) is even}, V2 = { y/d(u, y) is odd }

If possible suppose that G is not bipartite. Then there are at least two vertices (say v and w)
in either of the sets such that there is an edge e joining them.

If v, w ∈ V1 then d(u,w) and d(u, v) are even and concatenation of u− v and u− w paths
will be even which give rise to an odd cycle together with e as shown in figure.

Similarly if v, w ∈ V2 then u− v and u− w will be odd and their concatenation will be even
which give rise to an odd cycle together with e as shown in the figure.
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Thus in both the situation G contains an odd cycle which contradicts the fact that G does
not have any odd cycle. Therefore V1 and V2 form a bipartition of G. Hence G is bipartite.

Eulerian Trail: A trail in G is called an Eulerian trail if it includes every edge of G.

Closed Eulerian Trail: An Eulerian trail with identical end vertices is called a closed Eulerian
trail.

Eulerian Graph: A graph is called Euler graph or Eulerian graph if it has a closed Euler trail.
In this figure, G1 is an Eulerian graph as it has a closed Eulerian trail v1e1v2e2v3e3v4e4v5e5v6e6v1e7v5e8v3e9v1

while the graph G2 is not an Eulerian graph but it has an Eulerian trail v1e1v2e2v3e3v4e4v5e5v1e6v4.
Lemma: Any simple graph G having all the vertices with degree at least two then G contains a

cycle.
Proof: Let v1 be any vertex of G since d(v1) ≥ 2. We can choose an edge e1 with end vertices
v1 and v2 say. since d(v2) ≥ 2, We can choose an edge e2 with end vertices v2 and v3 say which
is different from v1. Continuing this process in like way at the ith stage, we have an edge ei with
end vertices vi and vi+1 where vi+1 is different from any vertex chosen earlier as shown in the
figure.

Since G has finitely many vertices, we must have choose a vertex which is chosen ear-
lier(Otherwise vertex of a last edge will have degree 1). If vk is the first such vertex then first
two occurrences of vk form a cycle as shown in following figure.

Theorem: The following are equivalent for a connected graph G
(1) G is Eulerian.
(2) Every vertex of G has even degree.
(3) The set of edges of G can be partitioned into cycles.
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Proof: (1) ⇒ (2) As G is an Eulerian graph it will have a closed Eulerian trail C starting and
ending at u. If v is a vertex of G other than u then v must be a vertex on the trail C since G
being connected and C is an Euler trail. Moreover v is met on the trail C, it is entered and left
by different edges (because C is a trail). Thus each occurrence of v in C contributes 2 to d(v).
Hence d(v) is even. Now C begins and ends with u, the first and last edges of C contribute 2 to
the degree of u and any internal occurrence of u on C will also contribute 2 to the degree of u.
Hence d(u) is also even. Thus degree of every vertex of G is even.

(2) ⇒ (3)
Since G is connected, nontrivial and every vertex has degree at least 2 then by Lemma-1 G
contains a cycle, say C. The removal of an edge of C results in a spanning subgraph G1 in which
every vertex has even degree. If G1 has no edges then all the edges of G form a cycle and (3)
holds. Otherwise the repetition of the argument applied to G1 results in a graph G2 in which all
the vertices are of even degree. If G2 has no edges then all the edges of G1 form a cycle and (3)
holds. Otherwise the argument can be repeated until we obtain a totally disconnected graph Gn.
Thus n-cycles G1, G2, . . . , Gn form a partition.

(3) ⇒ (1)
Let G can partitioned into cycles and C1 be one such cycle. If C1 is the only cycle the ob-
viously it contains all the edges of G and hence the result. Otherwise there is another cycle
C2 with vertex v1 common in C1. The walk beginning at v1 and consisting of the cycles C1

and C2 in succession is closed trail consisting of edges of these two cycles. By repeating the
process, we can construct a closed trail consisting all the edges of G. Hence G is an Eulerian graph.

Theorem: A connected graph G has an Euler trail iff it has either no vertices of odd degree or
exactly two vertices of odd degree.
Proof: Suppose G has an Euler trail and v is any vertex other than origin and terminus of the
trail. Then d(v) must be even. Thus the only possible odd vertices are the origin and terminus
vertices of the trail. Thus the number of odd vertices are exactly two(It can not be one because
we have proved that for any graph number of odd vertices are even).

Conversely suppose that u and v be the only vertices of odd degree of a graph G. Add an
edge joining u and v then e will increase degree of u and v by one. Now u and v are the vertices
of even degree. Consequently G + e will become a connected graph where all the vertices are of
even degree. G + e is an Eulerian graph which has a closed Eulerian trail v0e1v1e2 . . . envn. We
may suppose that e1 = e, v0 = u, v1 = v and vn = u. Then deleting edge e from above trail gives
trail v1e2 . . . envn from vertex v to vertex u which involves each edge of G exactly once. Hence
graph G has an Eulerian trail which completes the proof.

Note: Some authors define Euler trail by a closed trail. They call an open Euler trail as
”Unicursal line”. In our accepted terminology Euler trail need not be closed. Therefore for us
unicursal line is same as Euler trail. Using above theorem we have an immediate definition of
unicursal graph as follows:

Unicursal Graph:: A connected graph with exactly two vertices of odd degree is called unicursal
graph. This concept can be generalized in the following form.

Theorem: In a connected graph with exactly 2m vertices, with odd degree, there exist m edge
disjoint subgraphs such that they together contain all edges of G and that each is a unicursal
graph.
Proof: Let the odd degree vertices of a given graph G as u1, u2, . . . , um and v1, v2, . . . , vm. Add
m edges to G between the pairs (u1, v1), (u2, v2), . . . , (um, vm) to form a new graph G, whose
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every vertex is of even degree.

Then G is Euler graph and therefore it consists a closed Euler trail, say C. Now if we remove
from C the m edges we just added, C will split into m walks, each of which is a unicursal line.
The first removal will result into single unicursal line; the second removal will split that into two
unicursal line and each succession will split a unicursal line into two unicursal lines, until there
are m of them. And the resultant graph after each removal will have exactly two odd degree
vertices. Hence they are m edge disjoint unicursal graphs. Which completes the proof.

Eccentricity Let G be a connected graph with vertex set V (G). For each v ∈ V , the eccentricity
of v denoted by e(v) is defined by e(v) = max{d(u, v) : u ∈ V (G);u 6= v}.

Radius: The radius of G, denoted by rad(G) is defined by rad(G) = min{e(v) : v ∈ V (G)}.

Diameter: The diameter of G, denoted by diamm(G) is defined by diamm(G) = max{e(v) :
v ∈ V (G)} = max{d(u, v) : u, v ∈ V (G)}.

Here e(1) = 3, e(2) = 2, e(3) = 2, e(4) = 2, e(5) = 3, rad(G) = 2 and diam(G) = 3. Find

e(v), v ∈ V (G) where G is Petersen graph, Kn,n, Cn.

Hamiltonian Path: A Hamiltonian path in a graph G is a path which contains every vertex of G.

Hamiltonian Cycle: A Hamiltonian cycle in a graph G is a cycle which contains every vertex
of G.

Hamiltonian Graph: A graph G is called Hamiltonian if it has a Hamiltonian cycle.

G1 has no Hamiltonian path, G2 has a Hamiltonian path but no Hamiltonian cycle while
G3 has a Hamiltonian cycle acdba. Cn is Hamiltonian graph. Kn is Hamiltonian graph. Super

graph of every Hamiltonian graph is Hamiltonian.

Hamiltonian graph are named after Sir William Hamilton, an Irish mathematician(1805 -
1865) who invented a puzzle, called the Icosian game which he sold for 25 guineas to a game
manufacturer in Dublin. The puzzle involved a dodecahedron on which each of the 20 vertices
was labeled by the name of some capital city in the world. The object of the game to construct
using the edge of the dodecahedron, a tour of all the cities which visited each city exactly once
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beginning and ending at the same city.

Maximal non-Hamiltonian Graph: A simple graph G is called maximal non-Hamiltonian
graph if it is not Hamiltonian but addition of an edge between two non-adjacent vertices of G
results in a Hamiltonian graph. Here, G1 is maximal non-hamiltonian graph.

Theorem: If G is a simple graph with n vertices where n ≥ 3 and d(v) ≥ n/2 for every vertex v
of G is Hamiltonian.
Proof: If possible suppose that the result is not true. Then for some value n ≥ 3 there is a non
Hamiltonian graph in which every vertex has degree at least n/2. More over any spanning super
graph with the same set of vertices will also have every vertex with degree at least n/2 because
any proper super graph is obtained by introducing more edges. Thus there will be a maximal
non Hamiltonian graph G with n vertices and d(v) ≥ n/2. Such G is not complete as it is non
Hamiltonian. Then there are at least two non adjacent vertices u and v in G. Let G + uv be the
super graph of G by adding an edge between u and v. As a result this addition G + uv must
be Hamiltonian as G is maximal non Hamiltonian. Then G+uv will contain a Hamiltonian cycle C.

Let C = v1v2 . . . vnv1 with v1 = u and vn = v. Now let us consider following two sets.
S = {vi ∈ C there is an edge uvi+1 in G} and T = {vj ∈ C there is an edge vvj in G} Then
vn 6∈ S as well as vn 6∈ T otherwise the edges uv1 (interpreting vn+1 as v1) and vvn are loops
which is not possible as G being a simple graph. Thus vn 6∈ S ∪ T . Denoting |S|, |T | and |S ∪ T
as the number of elements in S , T and S ∪ T respectively, we get |S ∪ T | < n — (1)
Also for every edge incident with u there corresponds precisely one vertex vi in S thus |S| = d(u)
and |T | = d(v) — (2)

More over if vertex vk ∈ S ∪T then there is an edge e joining u to vk+1 and an edge f joining
v to vk which give rise to cycle C0 as C0 = v1vk+1vk+2 . . . vnvkvk+1 . . . v2v1 as a Hamiltonian
cycle in G as shown in figure which is a contradiction as G is non Hamiltonian.

This shows that S ∩ T = ∅ which implies that |S ∪ T | = |S|+ |T |. Hence by (1) and (2) we
have d(u) + d(v) = |S|+ |T | = |S ∪ T | < n.
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This is not possible since in G, d(u) ≥ n/2, d(v) ≥ n/2 and so d(u)+d(v) ≥ n. This contradiction
is due to our wrong assumption. Hence the result holds.

Theorem: If G be a simple graph with n vertices and let u and v be non adjacent vertices in G
such that d(u) + d(v) ≥ n. Let G + uv denote the super graph of G obtained by joining u and v
by an edge then G is Hamiltonian iff G + uv is Hamiltonian.
Proof: Suppose that G is Hamiltonian then it will contain a Hamiltonian cycle then its super-
graph must contain a Hamiltonian cycle. Therefore G + uv is also Hamiltonian.

Conversely suppose that G + uv is Hamiltonian and if G is non Hamiltonian then applying
the procedure adopted in preceding theorem, we reach to the contradiction d(u) + d(v) < n but
it is given that d(u) + d(v) ≥ n. Hence G must be Hamiltonian.

Hamilton Closure: Let G be a simple graph with n vertices. If there are two non-adjacent
vertices u1 and v1 in G such that d(u1) + d(v1) < n, join u1 and v1 by an edge to form the super
graph G1. Then if there are two nonadjacent vertices u2 and v2 such that d(u2) + d(v2) < n in
G1 join u2 and v2 by an edge to form the super graph G2. Continuing in this way, recursively
joining pairs of non-adjacent vertices where degree sum is at least n until no such pair remains.
The final subgraph thus obtained is called the closure of G and is denoted by C(G).

Note: If no two such vertices exist then C(G) = G.

The following result is the characterization of Hamiltonian graph depending on closure of a
graph.
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Theorem: A simple graph G is Hamiltonian if and only if its closure C(G) is Hamiltonian.

Proof: Since C(G) being a super graph of G and if G is Hamiltonian then C(G) must be
Hamiltonian. Conversely suppose that C(G) is Hamiltonian. Let G1, G2, . . . , Gk−1, Gk = C(G)
be the sequence of graph obtained by closure operation. Since C(G) = Gk is obtained from
Gk−1 by setting Gk = Gk−1 + uv where u and v is a pair of non adjacent vertices satisfying
d(u) + d(v) ≥ n then it follows from the theorem that Gk−1 is Hamiltonian. Similarly Gk−2 so
Gk−3, . . . so G1 and so G must be Hamiltonian.

Corollary: Let G be a simple graph on n vertices with n ≥ 3. If C(G) is complete then G is
Hamiltonian.
Proof: It is obvious from the theorem. Since any complete graph is Hamiltonian i.e. If
C(G) = Kn then G is Hamiltonian.

Definition: A graph G without cycle is called acyclic graph or forest.

Forest is shown in following figure:

Definition: An acyclic connected graph is called tree.

In following figure some trees are shown.

Theorem:(a) Let u and v be distinct vertices of a tree T . Then there is precisely one path from
u to v.

(b) Let G be a simple graph. If for every pair of distinct vertices u and v of G there is a
precisely one path from u to v then G is a tree.
Proof: (a) Let us suppose that the result is false. Then there are two different paths from u
to v, say P = uu1u2, . . . , umv and P ′ = uv1v2, . . . , vnv. Let w be the first vertex after u which
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belongs to both P and P ′ as shown in following figure. Then w = ui = vj for some indices i and
j.

This produces the cycle c = uu1 ::: uivj−1, . . . , v1u. Since T is a tree it has no cycles. This
contradiction is due to our wrong assumption. Thus there is precisely one path from u to v.
(b) Since by assumption, there is a path between each pair of vertices u and v implies that G
must be connected. Thus to prove the required result it suffices to prove that G has no cycles. If
possible G has a cycle C = v1v2v3, . . . , vnv1, where n ≥ 2. Since cycle is a trail, the edge vnv1
does not appear in the path v1v2, . . . , vn. Thus P = v1v2, . . . , vn and P0 = v1vn are two different
paths from v1 to vn. This contradicts our assumption of precisely one path between any pair of
distinct vertices. Hence G has no cycles. Then Gis a tree as required.

Theorem: Let T be a tree with at least one edge and P = u0u1u2, . . . , un be a path of maximum
length in T . Then d(u0) = 1 = d(un).
Proof: If possible let d(u0) > 1 then u0 is adjacent to u1 as well as adjacent to some other
vertex v of T . If this vertex is one of the vertex form the path P then this situation will give rise
to a cycle C = u0u1u2, . . . , vu0 as shown in below Figure.

Which is not possible as T is tree. If u0 is adjacent to any other vertex which is not on path P .
Let w be such vertex. Then C = wu0u1u2, . . . , un will produce a path of length n+ 1 as shown in
below Figure. Which is also not possible as it contradicts the maximality of P . Thus d(u0) > 1

is not possible. So d(u0) = 1. By similar argument one can show that d(un) > 1. Hence the result.

Corollary: Any tree T with at least one edge has more than one vertex of degree 1.
Proof: In such a tree T there is a longest path P . Then according to the result we have proved
there are at least two vertices of degree one.

Theorem: Every tree T on n vertices has exactly n− 1 edges.
Proof: To prove the result we will use induction on n. When n = 1 then T is trivial tree, it has
no edges as it has no loops. This proves the result for n = 1.

Now suppose that the result is true for n = k(where k ∈ N) and we will show that it true
for n = k + 1. Let T be a tree with k + 1 vertices and let u be the vertex of degree 1 in T (such
vertex exist due to corollary). Let e = uv be the unique edge of T which has u as an end. If x
and y are vertices in T both different form u then any path joining x to y does not go through
the vertex u. Otherwise edge e will occur twice in this path. Thus the subgraph T − u obtained

13



form T by deleting the vertex u is connected. Moreover if C is a cycle in T − u then C would be
cycle in T is impossible since T is a tree.

Thus the subgraph T − u is acyclic. Hence it is a tree. Since T − u has k vertices and so by
induction principle T − u has k − 1 edges. Since T − u exactly one edge less than T it follows
that T has k edges as required. In other words assuming result true for k ≥ N , we have shown
that it is true for k+1. Then by mathematical induction it is true for all k ∈ N . Hence the result.

Theorem: Let G be a forest with n vertices and k connected components. Then G has n− k
edges.
Proof: Denote the k components of G by c1, . . . , ck and suppose that for each i, 1 ≤ i ≤ k,
the ith component ci has ni vertices. Then

∑k
i=1 ni = n. Since each ci is a tree then it has

ni − 1 edges and each edge of G belongs to precisely one component of G and the total number
edges in G is (n1−1)+(n2−1)+. . .+(nk−1). Thus G has total

∑k
i−1 ni−k edges i.e. n−k edges.

Definition: An edge e (a vertex v) of a graph G is called a bridge or a cut edge (cut vertex) if
the edge (vertex) deleted sub graph G− e (G− v) has more connected components than G.

Consider the graph G as shown below where e is bridge and v is a cut vertex.

From the previous Figure one can observe that a bridge is an edge which is the only link
between two parts of a graph. Its deletion results into more disjoint parts.

Definition: For a graph G = (V,E) cut set is a connected minimal set of edges whose removal
from G renders G disconnected.

Definition: An edge e of a graph G is called a cycle edge if e is a part of some cycle.
In the following Figure e is a cycle edge. In fact all four edges of this graph G are cycle edge.

Theorem: Any edge of a graph G is a bridge if and only if it is not a cycle edge.
Proof: Let e be an edge between vertices u and v of graph G. If e is not a bridge then it is either
a loop or there is a path P = uu1 . . . unv from u to v different from the edge e. If it is a loop then
it forms cycle with itself. If there is a path P its concatenation with edge e is P = uu1 . . . unvu
is a cycle in G and e is cycle edge. Thus e is not a bridge then it is cycle edge which is equivalent
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to saying that if e is not part of any cycle then e must be a bridge. Conversely suppose that e is
a part of some cycle C = u0u1 . . . um in G. Let e = uiui+1 when m = 1, C = u0u1 is a loop. If
m > 1 then P = uiui−1 . . . u0um−1 . . . ui+1 is a path from u to v different from e which is shown
in Figure. Thus e is not a bridge. This shows that if e is a bridge then e is not a part of any
cycle.

Theorem: A connected graph G is a tree if and only if every edge of G is a bridge.
Proof: Suppose that G is a tree. Then G is acyclic i.e. no edge of G is a cycle edge. Then if e
is any edge of G it is a bridge by the theorem.

Conversely suppose that G is connected and every edge e of G is a bridge. Then G cannot
have any cycle since any cycle edge is not a bridge by above theorem. Hence G is acyclic
connected graph. so it is a tree.

Theorem: Let G be a graph with n-vertices. Then the following are equivalent.
(i) G is a tree.
(ii) G is acyclic graph with n− 1 edges.
(iii) G is a connected graph with n− 1 edges.
Proof: We will prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i)

(i) ⇒ (ii)
Suppose G is a tree. Then by its definition G is an acyclic graph and it has n − 1 edges

according to theorem. Thus (ii) holds.

(ii) ⇒ (iii)
Suppose that G is acyclic graph with n−1 edges and W (G) denoted the number of connected

components of G. Then by theorem G has n−W (G) edges. Here W (G) = 1 implies that G has
only one component i.e. G is connected. Thus (iii) holds.

(iii) ⇒ (i)
Suppose that G is connected graph with n− 1 edge. To prove (i) we have to show that G is

acyclic. If possible let G is not acyclic. Then G contains a cycle and any edge of this cycle can
not be a bridge according to theorem. Let e be such edges then since e is not a bridge G− e will
still remain connected. However G− e has n− 2 edges and n vertices which is not possible by
corollary. This contradiction is due to our assumption that G is not acyclic. Hence G must be
acyclic. Thus G is acyclic connected graph with n− 1 edges. So G is a tree.

Spanning Trees: A spanning tree of a graph G is a spanning subgraph of G that is tree. In
following Figure graph G and its spanning tree is shown.
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