

Laser irradiation effects on the dielectric properties of zinc ferrite at room temperature

Jayant K. Jogi^a, S. K. Singhal^b, Ravindra Jangir^c, Ashish Tanna^d, Amarjeet Singh^e, Bharavi Hirpara^f and Nikesh Shah^f,

^aDepartment of Physics, Gujarat Technological University, Ahmedabad, India; ^bScience and Humanities Department, Government Engineering College, Palanpur (affiliated to Gujarat Technological University, Ahmedabad), Ahmedabad, India; ^cAccelerator Physics and Synchrotrons Utilization Division, RRCAT, Indore, India; ^dDepartment of Physics, RK University, Rajkot, India; ^eADPLL, RRCAT, Indore, India; ^fDepartment of Physics, Saurashtra University, Rajkot, India

ABSTRACT

Zinc ferrite (ZF) nanomaterials were synthesised by the sol-gel autocombustion method. Synchrotron-XRD confirms the formation of the pure F-d3m spinel structure whereas EDX reveals the composition of synthesised nano ZF. We investigated and compared the dielectric properties of un-irradiated pellet ZF-UI and irradiated pellets ZF-I1 (pulsed Nd:YAG laser dose of 1.2 W, λ = 1064 nm), ZF-I2 (pulsed Nd:YAG laser dose of 1.5 W, $\lambda = 532 \,\text{nm}$) and ZF-I3 (continuous AlGaAs diode laser of 4 W, $\lambda = 808$ nm) at room temperature. Dielectric constant (ε') decreased prominently for ZF-UI while it decreased gradually for ZF-I1 and its decrement for ZF-I2 and ZF-I3 is very slow whereas dielectric constant (ε") decreased prominently for ZF-UI and ZF-I1while reduced slowly for ZF-I2 and ZF-I3 in the low-frequency region. E' becomes ~ 69% for ZF-I1 and ~ 9% for ZF-I2 and ZF-I3 at a higher frequency of 2 MHz whereas ε'' for radiated samples becomes steady and nearly equitable at higher frequencies in comparison to that of ZF-UI in the measured frequency range of 10 kHz to 2 MHz. Dielectric loss (tan δ) of all irradiated samples has decreased and become ~ 33% for ZF-I3, 43% for ZF-I2, nearly equal for ZF-I1 at 104 Hz and then decreased continuously up to 2 MHz when compared to $\tan \delta$ for ZF-UI. The Jonscher power law has been fitted in measured ac conductivity (σ ac) with angular frequency (ω) graphs. DC conductivity (σ_{dc}), temperature-dependent parameter B(T) and frequency exponent (n) have been extracted. σ_{dc} for all irradiated samples has decreased and become nearly 51% for ZF-I1, 3% for ZF-I2 and 2% for ZF-I3 in comparison to that of ZF-UI whereas B(T) increased to 1.6 times for ZF-I3 and decreased to 0.7 times for ZF-I1 and 0.2 times for ZF-I2 while n shows slight decrement for ZF-I2 and ZF-I3. Interpretation from Cole-Cole plots for un-irradiated and irradiated pellets is in agreement with our investigations. These results suggest that the dielectric properties of ZF can be controlled and tuned by laser irradiation.

ARTICLE HISTORY

Received 28 February 2023 Accepted 16 October 2023

KEYWORDS

Zinc ferrite; ceramics; laser irradiation; dielectrics