
FLSEVIER

Contents lists available at ScienceDirect

Materials Today: Proceedings

journal homepage: www.elsevier.com/locate/matpr

Thermal and laser irradiation effects on dielectric properties of zinc ferrite

Jayant K. Jogi^a, Amarjeet Singh^c, Bharavi Hirpara^d, Ravindra Jangir^e, Ashish R. Tanna^f, Kirti Korot^b, Nikesh Shah^d, S.K. Singhal ^{b,*}

- * Gujarat Technological University, Ahmedabad 382424, India
- ^b Department of Science and Humanities, Government Engineering College, Palanpur 385001, India
- ADPLL, RRCAT, Indore 452013, India
- ^d Department of Physics, Saurashtra University, Rajkot 36000S, India
- Synchrotron Utilization Section, RRCAT, Indore 452013, India
- Department of Physics, RK University, Rajkot 36 0020, India

ARTICLE INFO

Article history: Available online 25 April 2023

Keywords: Zinc ferrite laser irradiation dielectric property activation energy

ABSTRACT

Spinel zinc ferrite (ZF) nanomaterial was synthesized by using sol-gel auto-combustion route. Resulted ZF nanomaterial was characterised by synchrotron x-ray diffraction (S-XRD), energy dispersive x-ray (EDX) and field emission scanning electron microscope (FE-SEM). S-XRD pattern confirms the 'F-d3m space group' cubical spinel structure, EDX reveals the composition and FE-SEM gives morphological properties. ZF in the form of pellet was irradiated by pulsed Nd:YAG laser with 1.2 W power and λ = 1064 nm. Dielectric constants (ϵ ' & ϵ ") and dielectric loss ($\tan \delta$) have been plotted with frequency at different temperatures ranging from 303 K to 750 K. Dielectric constants decreased with the increase in frequency as the exchange of electrons among $Fe^{3*} \leftrightarrow Fe^{2*}$ does not follow the frequency of applied alternating field beyond certain frequency. Decrement in $\tan \delta$ is more prominent for irradiated pallet at low frequencies while it becomes nearly equitable at high frequencies. AC conductivity (σ_{ac}) increases with the increase in temperature exhibiting the semiconducting behavior. Measured σ_{ac} was fitted with Jonscher power law and DC conductivity (σ_{dc}) was extracted from the fitting at different temperatures ranging from 303 K to 750 K. Activation energy (E), calculated from $\ln \sigma_{dc}$ versus 1000/T plots increased slightly for 2F-2 than that of ZF-1. The changes in dielectric properties occur because of electrons hopping among Fe^{2*} and Fe^{3*} and σ oxidation states due to thermal treatment and laser irradiation.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Selection and peer-review under responsibility of the scientific committee of the International Conference on Futuristic Materials.